Alig néhány éves a LoRa, a nagy hatótávolságú, vezetékmentes kommunikáció új „reménysége”, amely gyökerestől formálhatja át a vezetékmentes mérő-adatgyűjtő rendszereket nemcsak az ipar és az infrastruktúra számos területén, hanem akár a mezőgazdaságban is.
A 2015-ben bemutatott LoRa (Long Range) technológia a 868 MHz-es ISM sávban (ipari, tudományos és orvosi sáv – Industrial, Scientific and Medical band), engedélyezéshez nem kötött, kis teljesítményű rádióval (25 mW) akár 10…15 km távolság áthidalására is képes. Az adatátvitel a 128 bites AES titkosításnak és a kettős kódolásának köszönhetően teljesen védett a külső (illetéktelen, esetenként ártó szándékú) behatásoktól. A kettős kódolás lényege, hogy a külső „burok” tartalmazza a hálózati adatokat és azon belül, mintegy belső, saját kódvédelemmel ellátott burokban helyezkedik el a „hasznos teher”, a felhasználói adat.
A LoRaWAN technológia egyik legnagyobb előnye robusztus üzemén kívül az energiahatékonyságában rejlik. Ugyanis a szenzor jelét több bázisállomás is veszi, de a hálózathoz a szenzor és a bázisállomás oldalon sincs szinkronizálás. Ennek köszönhetően az egyes szenzorok, képesek akár 3…5 évig is elemcsere nélkül, esetleg a környezeti „hulladékenergiából” gyűjtött energiát hasznosítva (energy harvesting) akár korlátlan ideig is működni, és közben információt, mérési adatokat szolgáltatni a felügyelni kívánt területről, berendezésről. Az esetek jelentős többségében a jellemző kommunikációs irány aszimmetrikus, vagyis az eszköztől a hálózat felé mutat. Ezek a kis fogyasztású kommunikációs modulok megkönnyíthetik a mérő-adatgyűjtő rendszerek kiépítését, növelve a hatékonyságot és az üzembiztonságot:
- a vízműveknél: mérőállások begyűjtésével, nyomásmérésekkel, esetleges vízbetörés jelzésekkel;
- távhő-szolgáltatóknál: mérőállások begyűjtésével, EX-es kivitelű eszközökkel gázméréseknél, nyomás és hőmérséklet mérésekkel és vízbetörés érzékeléssel;
- a mezőgazdaságban: a talajnedvesség, a hőmérséklet és a páratartalom mérésével, vagy a GPS-adóval ellátott eszközök esetében a legelő állatok nyilvántartásával;
- ipari üzemeknél: a telephelyen szétszórt, akár szigetüzemű mérők, érzékelők adatgyűjtésével.
Kiolvasó szoftverek
A 2. ábrán látható adatmegjelenítés értelmezése gyakorlott szemet és némi időt igényel, hiszen a üldés időpontján, a frekvenciasávon és a portszámon kívül első pillantásra más adat nem felismerhető. A gyakorlottabbak számára már a SeqNo oszlop adatai is értékelhető információval szolgálnak, hiszen az az adatcsomag sorszámát jelenti. A legfontosabb adatok értelmezése további feladatot ad, hiszen a Data, mint küldött érték egy hexadecimális karakterhalmaz, amelynek visszafejtése néhány percet is igénybe vehet. Természetesen az emberi számolgatás (és hibázás) kivédhető, ha egy rendelkezésre álló SCADA (pl: VisionX) szoftver azt kezelni és mértékegységgel együtt kijelezni is tudja. Azonban a „hagyományosnak” tekinthető PC-s megjelenítés is megkövetelte egy kiolvasó szoftver elkészítését, amelyre a továbbiakban még visszatérünk.
- Impulzusszámlálás: Elsőként az impulzusszámlálóval ellátott LoRa-modemek megjelenítését láthatjuk az ábrán. A LoRa kommunikációra alapozott mérő-adatgyűjtő rendszerek kiépítése leghamarabb a fogyasztói méréseknél merül fel, ahol vízórát, gázórát, esetleg impulzuskimenetű villamos fogyasztásmérőt szeretnének rendszerbe illeszteni. Az ACWLW8-MR2-(EX) típusú RF-modemek fejlesztésekor a fő célterület a mérés volt, ezért 2 db – bármilyen – digitális impulzus vagy állapot továbbítására alkalmasak. Ahogy a megjelenítő képen látszik, a mérőazonosító helyén az eredetileg kommunikált „eszközazonosító” helyett már a hozzárendelt fogyasztó azonosítója jelenik meg, amely könnyen értelmezhető. A két mért érték kijelzése az esetleges vezetékszakadás (vagy szabotázs) érzékelését hivatott jelezni.
-
Analóg mérés és digitális jelek: Amennyiben analóg érték mérésére van szükségünk, úgy a 0…10 V/0…20 mA jel fogadására alkalmas ACWLW8-DINDA lehet a megoldás, amely LoRaWAN hálózaton 300 bit/s…10 kbit/s sebességtartományban képes adatokat küldeni a bázisállomás felé. Ahogy az ábrán látható, akár nyomásérték, akár folyadékszint kijelzésére is lehetőségünk adódik. Érdekességként érdemes megjegyezni, hogy a modem tápfeszültsége 10…30 VDC, amelyet akár szigetüzemű „vízgenerátor” segítségével is biztosítani lehet, ami jelentős segítség lehet a vízművek számára a hálózatuk nyomásellenőrzési rendszerének kiépítésekor. Irodánkban a gyakorlati megvalósítás tesztelésére egy egyszerű kis vízturbinát használtunk, amelynek dokumentációja alapján maximális kimeneti feszültségként elvárt 18 V helyett 22 V feszültséget sikerült elérnünk, amely már gond nélkül, üzembiztosan képes az RF-modemet tápfeszültséggel ellátni.
-
Adatcsomagok kiolvasása: Az automatizálás területén talán a leghasznosabb RF-funkció a „vezetékhosszabbítás”, amely transzparens modemek segítségével akár több száz méteres kábelezéstől tud megmenteni. Ez akkor tesz szert különleges jelentőségre, ha a kábelezést műszaki és/vagy jogi akadályok miatt nehéz, hosszadalmas, költséges, sőt nem ritkán lehetetlen kivitelezni. A 868 MHz-es szabadfrekvencián számos alkalommal használtuk már a soros kommunikáció meghosszabbítására az ATIM DINRS modemeket. LoRaWAN környezetben azonban még hasznosabbnak bizonyult, hiszen a ACWLW8-DINRS RF-modem egyszerre 6 db Modbus (RTU 8N1) eszközt tud lekezelni és eszközönként 16 regiszternyi adatot tud továbbítani adatcsomagok formájában. Ezáltal az impulzusadós mérőhöz képest jelentősen több adatot (Pl.: feszültség, áram, hatásos és meddő teljesítmény, teljesítménytényező – akár fázisonként is) gyűjthetünk villamos fogyasztásmérőnkből.